《数字电路设计》期末串讲

Digital Circuit Design

李晨阳

6月11日

目录

1	Nur	mber System	3
	1.1	Conversion	3
	1.2	Arithmetic	4
	1.3	Negative Number	4
		1.3.1 Conversion: Binary –2' s Complement	5
	1.4	Floating Point Numbers	5
	1.5	Parity Checking	6
2	\mathbf{Log}	ic Function and Switching Algebra	6
	2.1	Some Gates	6
	2.2	Theorems	7
3	Kar	rnaugh Maps	8
	3.1	Minterm and Maxterm	8
	3.2	Karnaugh Map	9
		3.2.1 Prime Implicants	11
4	Haz	zards and Glitches	12
5	Late	ches and Flip-Flop	13
	5.1	SR Latch(NOR gate)	13
	5.2	$\overline{S} \ \overline{R}$ Latch	14
	5.3	D Latch	15
	5.4	Master-Slave D Flip-Flop	15
	5.5	Master-Slave JK Flip-Flop	16
	5.6	Edge-Triggered Flip-Flops	16
	5.7	Timing parameters	17
6	Seq	uential Circuit Analysis	17
	6.1	Structure	17
	6.2	3 equations and 3 tables	18

D	Digital Circuit Design F	Final Revision		
	6.3 Process	19		
7	Autonomous Sequential Circuit Design	20		
	7.1 Process	21		

1 Number System

1.1 Conversion

- Hexadecimal (base 16): Digits in base 16 range from 0 to 15: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
- MSB:Most Significant Digit.(rightmost)

LSB:Least Significant Digit.(leftmost)

$$53_{10} = 110101_2$$

- A large binary number to be converted to decimal. (Binary number-Hex-Decimal).
- Non-integer conversion: Integer part: from LSD to MSD. Fractional Part: from MSD to LSD.

Exercise 1:

Convert 46 to binary.

Convert 265.7810 to hexadecimal.

Convert 345_{16} to binary.

Convert 111001001010_2 to Decimal.

1.2 Arithmetic

- 1. Carry to next place when you exceed base!
- 2. Borrow the base amount when you need to subtract!

EXAMPLE:

A 7 3 4 8 6 5

+ 1 2 5 9 D 6

A 8 5 A 2 3 B

1.3 Negative Number

- Sign-Magnitude Representation: Magnitude and symbol representing +/ -.
- Two's Complement:n bits create a range over $[-2^n 1...2^n 1-1]$.

Code	Simple	Signed	2's Comp
0000	0	+0	0
0001	1	1	1
0010	2	2	2
0011	3	3	3
0100	4	4	4
0101	5	5	5
0110	6	6	6
0111	7	7	7
1000	8	-0	-8
1001	9	-1	-7
1010	10	-2	-6
1011	11	-3	-5
1100	12	-4	-4
1101	13	- 5	-3
1110	14	-6	-2
1111	15	-7	-1
1			

1.3.1 Conversion: Binary -2's Complement

- 1. Obtain the n-bit simple binary equivalent.
- 2. Invert the bits of that representation.
- 3. Add 1 to the result.
- 4. Copy the sign bit into all the additional bits in the new format if you need to make extension.

Exercise 2:

Convert -46 to 8-bit 2's complement.

Calculate 28-32.(in 2's Complement).

1.4 Floating Point Numbers

Exercise 3:

Represent -0.75 in floating point format.

1.5 Parity Checking

- Even-parity code: set the parity bit to 0 if there's an even number of 1s; set the parity bit to 1 otherwise.
- Odd-parity code: set the parity bit to 0 if there's an odd number of 1s; set the parity bit to 1 otherwise.

2 Logic Function and Switching Algebra

Switching Algebra:

- Two-valued boolean algebra.
- Basic operations are AND, OR and complement.

2.1 Some Gates

NAND	NOR	XOR	XNOR
A B F 0 0 1 0 1 1 1 0 1 1 1 0	A B F 0 0 1 0 1 0 1 0 0 1 1 0	A B F 0 0 0 0 1 1 1 0 1 1 1 0	A B F 0 0 1 0 1 0 1 0 0 1 1 1
F = (A.B)'	F = (A+B)'	F = (A⊕B)	F = (A⊕B)'
		F = A'B+AB'	F = A'B'+AB

2.2 Theorems

(T1)
$$X+0 = X$$
 (T1') $X \cdot 1 = X$
(T2) $X+1 = 1$ (T2') $X \cdot 0 = 0$
(T3) $X+X = X$ (T3') $X \cdot X = X$
(T4) $(X')' = X$
(T5) $X+X' = 1$ (T5') $X \cdot X' = 0$

De Morgan's Theorems: Interchanging operations and complement each variable.

$$(T13)(X1 \cdot X2 \cdot \dots \cdot Xn)' = X1' + X2' + \dots + Xn'$$

 $(T13')(X1 + X2 + \dots + Xn)' = X1' \cdot X2' \cdot \dots \cdot Xn'$

Principle of Duality: Only interchange operations.

Example: The dual of $F = X \cdot Y + Z \cdot W$ is $F^D = (X + Y) \cdot (Z + W)$.

Exercise 4:

Two (and Three) Variable Theorems

Simplify
$$F = [AB'(A+C)']'[(A'B)' + (A+B'+C')]$$

Simplify
$$F = (A + B)(A + C')(A + D)(BC'D + E)$$

3 Karnaugh Maps

Another approach to represent (and simplify) Boolean equations.

3.1 Minterm and Maxterm

1. minterm:

- A product of n distinctive logic variables (or their complements); e.g., $X \cdot Y \cdot Z$;
- The sum of minterms corresponds to the combination of Truth Table rows for which the function produces a 1 output;
- Each variable is represented by its complement if the variable value is 0.

2. maxterm:

• The sum of n distinctive logic variables or their complements e.g., X+Y+Z.

- The product of maxterms corresponds to the product of Truth Table rows for which the function produces a 0 output;
- Each variable is represented by its complement if the variable value is 1.

EXAMPLE: Write the boolean function in the form of Sum of Minterms and Product of maxterms.

	F	F	XYZ
m_0	0	1	000
m ₁	1	0	001
m ₂	0	1	0 1 0
m ₃	1	0	0 1 1
m ₄	1	0	100
m ₅	0	1	101
m_6	1	0	110
m ₇	0	1	111

3.2 Karnaugh Map

Tips: The minterm numbers do not follow the normal binary counting order sequence. Only 1 bit changes from one adjacent column to the next.

图 1: 2-variable k-map

图 2: 3-variavle k-map

图 3: 4-variable k-map

Process of simplifying using k-map:

- 1. Put 1's in boxes of corresponding terms and put 0's in all other boxes.
- 2. group adjacent 1's (in powers of 2) and eliminate unnecessary variables.
- 3. Remember to circle the largest groupings possible!

Exercise 5:

Simplify $F = X' \cdot Y' \cdot Z' + X' \cdot Y' \cdot Z + X' \cdot Y \cdot Z' + X \cdot Y' \cdot Z' + X \cdot Y' \cdot Z$ using k-map and draw the **NAND** gate implementation.

3.2.1 Prime Implicants

When we do grouping, we should always ensure that the size of each group is maximised and the number of groups is minimised to get **minimal sum of products**.

Prime Implicants:Largest possible grouping of 1's.(for each 1)

Essential Prime Implicants:If any group contains a minterm that isn't also covered by another overlapping group, then that is an EPI.

Exercise 6:

Find PIs, EPIs, and the equation.

AB	00	01	11	10
00	1	0	1	1
01	0	1	1	1
11	0	1	1	1
10	1	0	0	1

Exercise 7: Find the minimal sum of products for F where, F = X'Y'Z + X'YZ' + X'YZ' + XY'Z' + XY'Z' + XY'Z'.

x YZ	00	01	11	10
0	0	0	0	0
1	0	0	0	0

Don't care:

4 Hazards and Glitches

Output glitch: A momentary unexpected output change (short pulse) when an input changes; usually caused by gate propagation delays.

Hazards: A timing hazard exists in a combinational circuit when it produces an output glitch when one or more inputs change.

Find adjacent groups!

- A static-1 hazard is a pair of input combinations that: (i) differ in only one input variable and (ii) both give a 1 output; such that it is possible for a momentary 0 output to occur during a transition in the differing input variable.
- A static-0 hazard is a pair of input combinations that: (i) differ in only one input variable and (ii) both give a 0 output; such that it is possible for a momentary 1 output to occur during a transition in the differing input variable.

Exercise 8: Is there any static hazard on F = A'D' + A'B'C' + ABC + ACD?

5 Latches and Flip-Flop

5.1 SR Latch(NOR gate)

Inputs		Outputs			
S R		Q	QN		
0 0		last Q	last QN		
0 1		0	1		
1 0		1	0		
1 1		0	0		
Undefined operation when both inputs are <i>True</i> .					

Oscillation occurs if both S and R return to 0 simultaneously!

SR Latch with Control Input (2/2)

5.2 $\overline{S} \overline{R}$ Latch

Exercises 9:Draw the outputs of an SR latch for the input waveforms shown below. Assume that the propagation delay of a NOR gate is 10ns.

5.3 D Latch

- Can eliminate the indeterminate state by ensuring that both Set and Reset inputs are never equal to '1' at the same time!
- Has only two inputs: Data (D) and Control (C).

5.4 Master-Slave D Flip-Flop

5.5 Master-Slave JK Flip-Flop

No indeterminate state!

7	K	С	Ø	QN
х	Х	0		
0	0	7		
0	1	7		
1	0	7		
1	1	7		

- 1's Catching: Output changes to 1 even though K and not J is asserted at the end of the triggering pulse.
- 0's Catching: Output changes to 0 even though J and not K is asserted at the end of the triggering pulse.

5.6 Edge-Triggered Flip-Flops

Ignore inputs while the clock pulse is at a constant level. Only set outputs on clock pulse transitions. Thus solving the catching problems.

5.7 Timing parameters

- Propagation Delay
- recovery time(SR Latch)
- setup time
- hold time

6 Sequential Circuit Analysis

6.1 Structure

6.2 3 equations and 3 tables

- Input Equation(excitation). A boolean equation expressesed by Next-state logic, in terms of the input to the state memory. equation
- Characteristic Equation. Determined by the characteristic equation for the flip-flop type.

Device Type	Characteristic Equation
S-R Latch MS S-R Flip-Flop	Q* = S + R'Q
D Latch	Q* = D
JK Latch MS J-K Flip-Flop ET J-K Flip-Flop	Q* = JQ' + K'Q
ET D Flip-Flop	Q* = D
D Flip-Flop w/ Enable	$Q^* = E_N D + E_{N'} Q$
T Flip-Flop	Q* = Q'
T Flip-Flop w/ Enable	$Q^* = E_N Q' + E_N' Q$

- Output Equation
- Transition Table: Expresses the next state as a function of the current state and the input.
- State Table: Expresses the next state as a function of the current state and the input using alphanumeric state names.
- State/Output Table: Similar to the State Table, but includes the output as well.

6.3 Process

- 1. Obtain the input (or excitation) equations.
- 2. Obtain the output equations.
- 3. Obtain the next state (or characteristic) equations.
- 4. Substitute the *input equations* into the *next state equations* to obtain *transition equations*.
- 5. Develop a transition table from the transition equations.
- Develop a state table that relates the possible states in terms of the present and next state.
- Develop a state/output table that relates the possible states in terms of the present and next state, together with the outputs.
- 8. Draw the state diagram.

Exercise 10: Analyze the following sequential circuit, draw the transition diagram.

Exerciese 11: Analyze the following sequential circuit, draw the transition diagram.

7 Autonomous Sequential Circuit Design

Autonomous circuits do not have primary inputs, they have only secondaries (plus a clock signal).

7.1 Process

- 1. Draw-up a table of present and next states. Need to take account of the characteristic equation of the flip-flop
- 2. Draw a Karnaugh map for each next state output(flip-flop input) in terms of the present state.
- 3. Minimise the logic using Karnaugh map simplification
- 4. Draw-up the corresponding circuit diagram for the FSM.

Exercise 12: Design a 6-state counter using the first six binary numbers. Use JK flip-flops.

Exercise 13: Design a ring adder with an effective cycle state of 100-010-001-100.

谢谢!

祝大家取得好成绩!